Quantum White Noise Derivatives and Their Applications

Nobuaki Obata
based on the long term collaboration with Un Cig Ji

GSIS, Tohoku University

Hammamet, October 15, 2013
Plan

1. Elements of Quantum White Noise Calculus

2. Quantum White Noise Derivatives

3. Wick Type Differential Equations for White Noise Operators

4. Applications
1. Elements of Quantum White Noise Calculus
1.1. Boson Fock Space

\(T \): a topological space (time interval, space-time manifold, even a discrete space,...)

\(H = L^2(T, dt) \): Hilbert space of \(\mathbb{C} \)-valued \(L^2 \)-functions

The Boson Fock space over \(H = L^2(T) \) is defined by

\[
\Gamma(H) = \left\{ \phi = (f_n); f_n \in H^\bigotimes n, \ ||\phi||^2 = \sum_{n=0}^{\infty} n!|f_n|^2_0 < \infty \right\},
\]

where \(|f_n|_0 \) is the usual \(L^2 \)-norm of \(H^\bigotimes n = L^2_{\text{sym}}(T^n) \).

Annihilation and Creation Operators

\[
A(f) : (0, \ldots, 0, \xi^\bigotimes n, 0, \ldots) \mapsto (0, \ldots, 0, n \langle f, \xi \rangle \xi^\bigotimes (n-1), 0, 0, \ldots)
\]

\[
A^*(f) : (0, \ldots, 0, \xi^\bigotimes n, 0, \ldots) \mapsto (0, \ldots, 0, 0, \xi^\bigotimes n \hat{\otimes} f, 0, \ldots)
\]

\(\triangleright \) \(A(f) \) and \(A(f)^* \) are unbounded operators in \(\Gamma(H) \).

\[
A(f) = \int_T f(t) a_t \, dt, \quad A^*(f) = \int_T f(t) a_t^* \, dt,
\]

are merely symbolic notation \(\implies \) Formulate \(a_t \) and \(a_t^* \) as continuous operators
1.2. White Noise Distributions

Gelfand (nuclear) triple for $H = L^2(T)$

$$E \subset H = L^2(T) \subset E^*,$$

$$E = \operatorname{proj lim}_{p \to \infty} E_p, \quad E^* = \operatorname{ind lim}_{p \to \infty} E_{-p},$$

where E_p is a dense subspace of H and is a Hilbert space for itself.

Gelfand (nuclear) triple for $\Gamma(H)$ [Kubo–Takenaka PJA 56A (1980)]

$$(E) \subset \Gamma(H) \subset (E)^*, \quad (E) = \operatorname{proj lim}_{p \to \infty} \Gamma(E_p), \quad (E)^* = \operatorname{ind lim}_{p \to \infty} \Gamma(E_{-p})$$

The annihilation and creation operator at a point $t \in T$

$$a_t : (0, \ldots, 0, \xi \otimes^n, 0, \ldots) \mapsto (0, \ldots, 0, n\xi(t)\xi \otimes^{(n-1)}, 0, 0, \ldots)$$

$$a^*_t : (0, \ldots, 0, \xi \otimes^n, 0, \ldots) \mapsto (0, \ldots, 0, 0, \xi \otimes^n \delta_t, 0, \ldots)$$

The pair $\{a_t, a^*_t ; t \in T\}$ is called the quantum white noise on T. $a_t \in \mathcal{L}((E), (E))$ and $a^*_t \in \mathcal{L}((E)^*, (E)^*)$ for all $t \in \mathbb{R}$. Moreover, both maps $t \mapsto a_t \in \mathcal{L}((E), (E))$ and $t \mapsto a^*_t \in \mathcal{L}((E)^*, (E)^*)$ are operator-valued test functions, i.e., belongs to $E \otimes \mathcal{L}((E), (E))$ and $E \otimes \mathcal{L}((E)^*, (E)^*)$, respectively.
1.3. Classical and Quantum Brownian Motions

\[E = S(\mathbb{R}) = \operatorname{proj lim}_{p \to \infty} S_p(\mathbb{R}) \text{ and } H = L^2(\mathbb{R}). \]

\(\mu \): Gaussian measure on \(E^* \) defined by the characteristic functional:

\[e^{-\|\xi\|^2/2} = \int_{E^*} e^{i\langle x, \xi \rangle} \mu(dx), \quad \xi \in E. \]

\((E^*, \mu)\): Gaussian space

Under the Wiener–Itô–Segal isomorphism \(L^2(E^*, \mu) \cong \Gamma_{\text{Boson}}(H) \) the Brownian motion is defined by

\[B_t = \langle x, 1_{[0,t]} \rangle \leftrightarrow (0, 1_{[0,t]}, 0, 0, \ldots) \]

Quantum decomposition of Brownian motion and white noise:

\[B_t = A(1_{[0,t]}) + A^*(1_{[0,t]}) \]

\[W_t = a_t + a_t^* \]

\(t \mapsto W_t \in (E)^* \) white noise process (Hida’s idea)

\(t \mapsto a_t \in \mathcal{L}((E), (E)), a_t^* \in \mathcal{L}((E)^*, (E)^*) \) quantum white noise process
1.4. CKS- and GHOR-Approaches for $\mathcal{W} \subset \Gamma(H) \cong L^2(E^*, \mu) \subset \mathcal{W}^*$

$$\Gamma_{\alpha}(E_p) = \left\{ \phi = (f_n); f_n \in E_p^{\hat{\otimes}n}, \|\phi\|_{p,+}^2 = \sum_{n=0}^{\infty} n! \alpha(n) |f_n|^2_p < \infty \right\},$$

$$\mathcal{W} = \operatorname{proj \lim}_{p \to \infty} \Gamma_{\alpha}(E_p),$$

$$\operatorname{Exp}(E_p, \theta, m) = \left\{ f : E_p \to \mathbb{C}; \text{ entire holomorphic,} \right. $$

$$\|f\|_{\theta, p, m} = \sup_{x \in E_p} |f(x)| e^{-\theta(m|x|_p)} < \infty$$

$$\mathcal{F}_\theta(E^*) = \operatorname{proj \lim}_{p \to \infty, m \to +0} \operatorname{Exp}(E_{-p}, \theta, m),$$

$$\mathcal{W} = \{ \text{Taylor coefficients of } \phi \in \mathcal{F}_\theta(E^*) \}$$

The above two classes of Gelfand triples coincide.
1.5. White Noise Operators

Definition

Based on the Gelfand triple $(E) \subset \Gamma(H) \subset (E)^*$ a continuous operator from (E) into $(E)^*$ is called a *white noise operator*. The space of white noise operators is denoted by $\mathcal{L}((E), (E)^*)$ (bounded convergence topology).

$\mathcal{L}((E), (E)), \mathcal{L}((E)^*, (E)^*), \mathcal{L}(\Gamma(H), \Gamma(H)) \subset \mathcal{L}((E), (E)^*)$.

Definition (Integral kernel operator)

Given $\kappa_{l,m} \in (E^{\otimes(l+m)})^*$, $l, m = 0, 1, 2, \ldots$,

$$\Xi_{l,m}(\kappa_{l,m}) = \int_{T^{l+m}} \kappa_{l,m}(s_1, \ldots, s_l, t_1, \ldots, t_m)$$

$$a_{s_1}^* \cdots a_{s_l}^* a_{t_1} \cdots a_{t_m} \, ds_1 \cdots ds_l \, dt_1 \cdots dt_m$$

is a well-defined white noise operator and is called an *integral kernel operator*.

$$\Delta_G = \int_T a_t^2 \, dt \quad \text{(Gross Laplacian)} \quad N = \int_T a_t^* a_t \, dt \quad \text{(Number operator)}$$
1.6. Fock Expansion

Theorem (O. JMSJ 45 (1993); tracing back to Haag, Berezin, Krée,...)

Every white noise operator \(\Xi \in \mathcal{L}((E), (E)^*) \) *admits the Fock expansion:*

\[
\Xi = \sum_{l,m=0}^{\infty} \Xi_{l,m}(\kappa_{l,m}), \quad \kappa_{l,m} \in (E^{\otimes (l+m)})^*,
\]

where the right-hand side converges in \(\mathcal{L}((E), (E)^*) \). *If* \(\Xi \in \mathcal{L}((E), (E)) \), *then* \(\kappa_{l,m} \in E^{\otimes l} \otimes (E^{\otimes m})^* \) *and the series converges in* \(\mathcal{L}((E), (E)) \).

Applications and Generalizations:

1. **rotation-invariant operators** \((N, \Delta_G, \Delta_G^*) \) \([O. MZ 210 (1992)]\)
2. **derivations and Wick derivations** \([Chung–Chung (1996), Huang–Luo (1998), etc.]\)
3. **multilinear operators** \([Ji–O.–Ouerdiane (2002)]\)
4. **Hochschild cohomology group** \([Léandre (2008)]\)

Our Conceptual Standpoint

A white noise operator \(\Xi \) as a function of quantum white noise:

\[
\Xi = \Xi(a_s, a_t^*; s, t \in T)
\]

\(\implies\) *We treat* \(\{a_s, a_t^*; s, t \in T\} \) *as a coordinate system* for white noise operators.
1.7. Wick Product

Let us introduce a product of operators, different from the usual composition.

Definition (Wick (normal-ordered) product)

For $\Xi_1, \Xi_2 \in \mathcal{L}((E), (E)^*)$ the Wick (or normal-ordered) product $\Xi_1 \diamond \Xi_2$ is defined by

$$(\Xi_1 \diamond \Xi_2)(\xi, \eta) = \tilde{\Xi}_1(\xi, \eta)\tilde{\Xi}_2(\xi, \eta)e^{-\langle \xi, \eta \rangle}, \quad \xi, \eta \in E,$$

where $\tilde{\Xi}(\xi, \eta)$ is the symbol of a white noise operator $\Xi \in \mathcal{L}((E), (E)^*)$ defined by

$$\tilde{\Xi}(\xi, \eta) = \langle \Xi \phi_{\xi}, \phi_{\eta} \rangle, \quad \xi, \eta \in E,$$

where $\phi_{\xi} = (1, \xi, \cdots, \xi \otimes n / n!, \cdots)$ is an exponential vector.

Important properties:

1. Equipped with the Wick product, $\mathcal{L}((E), (E)^*)$ becomes a commutative algebra.
2. For any $\Xi \in \mathcal{L}((E), (E)^*)$ we have

$$a_t \diamond \Xi = \Xi \diamond a_t = \Xi a_t, \quad a_t^* \diamond \Xi = \Xi \diamond a_t^* = a_t^* \Xi.$$
1.8. Convolution Product \equiv Wick Product

Definition (Ben Chrouda–El Oued–Ouerdiane Soochow JM 28 (2002))

With each $\Phi \in \mathcal{W}^*$ we associate the *convolution operator* $C_\Phi \in \mathcal{L}(\mathcal{W}, \mathcal{W})$ defined by

$$[H(C_\Phi \phi)](x) = \langle \langle \Phi, T_{-x} \phi \rangle \rangle, \quad x \in E^*.$$

Theorem (O.–Ouerdiane IDAQP 14 (2011))

$$C_\Phi = (M_\Phi^\diamond)^*, \quad M_\Phi^\diamond = (C_\Phi)^*, \quad \Phi \in \mathcal{W}^*,$$

where $M_\Phi^\diamond \in \mathcal{L}(\mathcal{W}^*, \mathcal{W}^*)$ is the *Wick multiplication operator* defined by

$$M_\Phi^\diamond \Psi = \Phi \diamond \Psi, \quad \Psi \in \mathcal{W}^*.$$

In some literatures, the “convolution product” of $\Phi, \Psi \in \mathcal{W}^*$ is defined by

$$\langle \langle \Phi \star \Psi, \phi \rangle \rangle = \langle \langle \Psi, C_\Phi \phi \rangle \rangle.$$

Using $C_\Phi = (M_\Phi^\diamond)^*$ we see that

$$\langle \langle \Psi, C_\Phi \phi \rangle \rangle = \langle \langle M_\Phi^\diamond \Psi, \phi \rangle \rangle = \langle \langle \Phi \diamond \Psi, \phi \rangle \rangle$$

Therefore, the convolution product $= \text{the Wick product}: \Phi \star \Psi \equiv \Phi \diamond \Psi$.
2. Quantum White Noise Derivatives
2.1. Motivation

Hida’s idea of white noise functional:
\[F = F(W_t ; t \in T), \text{ where } \{W_t\} \text{ plays a role of orthogonal coordinate system} \]

Our idea

For a white noise operator
\[\Xi = \Xi(a_s, a^*_t ; s, t \in T) \]
we should like to define the derivatives with respect to \(a_s \) and \(a^*_t \):
\[\frac{\delta \Xi}{\delta a_s} \text{ and } \frac{\delta \Xi}{\delta a^*_t} \]

Expected properties:
\[\frac{\delta}{\delta a_s} \int f(t) a_t dt = f(s) I \]
\[\frac{\delta}{\delta a_s} \int f(s, t) a_s a_t ds dt = \int f(s, t) a_t dt + \int f(t, s) a_t dt \]
\[\frac{\delta}{\delta a^*_t} \int f(s, t) a_s a^*_t ds dt = \int f(s, t) a_s ds \]
2.2. Definition

Definition (Ji–O. Sem. et Congres 16 (2008))

For $\Xi \in \mathcal{L}((E), (E)^*)$ and $\zeta \in E$ we define $D^{\pm}_\zeta \Xi \in \mathcal{L}((E), (E)^*)$ by

$$D^+_\zeta \Xi = [a(\zeta), \Xi], \quad D^-_\zeta \Xi = -[a^*(\zeta), \Xi].$$

These are called the *creation derivative* and *annihilation derivative* of Ξ, respectively. Both together are called the *quantum white noise derivatives*.

Note: For $\zeta \in E$, both

$$a(\zeta) = \Xi_{0,1}(\zeta) = \int_T \zeta(t) a_t \, dt, \quad a^*(\zeta) = \Xi_{1,0}(\zeta) = \int_T \zeta(t) a^*_t \, dt,$$

belong to $\mathcal{L}((E), (E)) \cap \mathcal{L}((E)^*, (E)^*)$.

Some properties:

1. $(D^+_\zeta \Xi)^* = D^-_\zeta (\Xi^*)$ and $(D^-_\zeta \Xi)^* = D^+_\zeta (\Xi^*)$.
2. D^{\pm}_ζ is a continuous linear map from $\mathcal{L}((E), (E)^*)$ into itself.
3. Moreover, $(\zeta, \Xi) \mapsto D^{\pm}_\zeta \Xi$ is a continuous bilinear map from $E \times \mathcal{L}((E), (E)^*)$ into $\mathcal{L}((E), (E)^*)$.
2.3. Examples

(1) The generalized Gross Laplacian associated with S is defined by

$$\Delta_G(S) = \Xi_{0,2}(\tau_S) = \int_{T \times T} \tau_S(s, t) a_s a_t \, ds \, dt,$$

where $S \in \mathcal{L}(E, E^*)$ and $\tau = \tau_S \in (E \otimes E)^*$ are related as

$$S\xi(s) = \int_T \tau_S(s, t) \xi(t) \, dt.$$

Then, $\Delta_G(S) \in \mathcal{L}((E), (E))$ and

$$D_\zeta^+ \Delta_G(S) = 0, \quad D_\zeta^- \Delta_G(S) = a(S\zeta) + a(S^*\zeta).$$

In fact, since

$$D_t^- \Delta_G(S) = \int_T \tau_S(s, t) a_s \, ds + \int_T \tau_S(t, s) a_s \, ds,$$

we have

$$D_\zeta^- \Delta_G(S) = \int_{T \times T} \tau_S(s, t) a_s \zeta(t) \, ds \, dt + \int_{T \times T} \tau_S(t, s) a_s \zeta(t) \, ds \, dt$$

$$= \int_T S\zeta(s) a_s \, ds + \int_T S^*\zeta(s) a_s \, ds = a(S\zeta) + a(S^*\zeta).$$
2.3. Examples (cont)

(2) The adjoint of $\Delta_G(S) \in \mathcal{L}((E)^*, (E)^*)$ is given by

$$\Delta^*_G(S) = \Xi_{2,0}(\tau_S) = \int_{T \times T} \tau_S(s,t)a^*_s a^*_t \, dsdt$$

The quantum white noise derivatives are given by

$$D^-_\zeta \Delta^*_G(S) = 0, \quad D^+_\zeta \Delta^*_G(S) = a^*(S\zeta) + a^*(S^*\zeta)$$

(3) The *conservation operator* associated with S is defined by

$$\Lambda(S) = \Xi_{1,1}(\tau_S) = \int_{T \times T} \tau_S(s,t)a^*_s a_t \, dsdt$$

In general, $\Lambda(S) \in \mathcal{L}((E), (E)^*)$.

The quantum white noise derivatives are given by

$$D^-_\zeta \Lambda(S) = a^*(S\zeta), \quad D^+_\zeta \Lambda(S) = a(S^*\zeta).$$
2.4. Wick Derivations

\((\mathcal{L}((E), (E)^*), \diamond)\) is a commutative algebra.

Definition (Wick derivation)

A continuous linear map \(D : \mathcal{L}((E), (E)^*) \to \mathcal{L}((E), (E)^*)\) is called a Wick derivation if

\[
D(\Xi_1 \diamond \Xi_2) = (D\Xi_1) \diamond \Xi_2 + \Xi_1 \diamond (D\Xi_2), \quad \Xi_1, \Xi_2 \in \mathcal{L}((E), (E)^*).
\]

Theorem (Ji–O. JMP 51 (2010))

The creation and annihilation derivatives \(D_\zeta^\pm\) are Wick derivations for any \(\zeta \in E\).

▶ Wick derivations for white noise functions [Chung–Chung JKMS 33 (1996)].

Theorem (Ji–O. JMP 51 (2010))

A general Wick derivation \(D\) is expressed in the form:

\[
D = \int_T F(t) \diamond D_t^+ \, dt + \int_T G(t) \diamond D_t^- \, dt,
\]

where \(F, G \in E \otimes \mathcal{L}((E), (E)^*)\).
3. Wick Type Differential Equations for White Noise Operators
3.1. A General Result

Let $\mathcal{D} : \mathcal{L}((E), (E)^*) \rightarrow \mathcal{L}((E), (E)^*)$ be a Wick derivation and $G, F \in \mathcal{L}((E), (E)^*)$. Assume that there exist $Y, Z \in \mathcal{L}((E), (E)^*)$ satisfying

(i) $\mathcal{D}Y = G$;

(ii) $\text{wexp } Y \in \mathcal{L}((E), (E)^*)$;

(iii) $\mathcal{D}Z = F \diamond \text{wexp } (-Y)$.

Then a white noise operator $\Xi \in \mathcal{L}((E), (E)^*)$ is a solution to

$$\mathcal{D}\Xi = G \diamond \Xi + F$$

if and only if Ξ is of the form:

$$\Xi = (Z + C) \diamond \text{wexp } Y$$

with a white noise operator $C \in \mathcal{L}((E), (E)^*)$ satisfying $\mathcal{D}C = 0$.

$$\text{wexp } Y = \sum_{n=0}^{\infty} \frac{1}{n!} Y^{\diamond n}, \quad Y \in \mathcal{L}((E), (E)^*),$$
Let us consider the differential equation:

\[D_\zeta \Xi = 2a(\zeta) \diamond \Xi, \quad \zeta \in E. \] \hspace{1cm} (3)

Apply our general result (the previous Theorem).

1. We need to find \(Y \in \mathcal{L}((E), (E)^*) \) satisfying \(D_\zeta Y = 2a(\zeta) \).
2. In fact, \(Y = \Delta_G \) is a solution.
3. Moreover, it is easily verified that \(\text{wexp} \Delta_G \) is defined in \(\mathcal{L}((E), (E)) \).
4. Then, a general solution to (3) is of the form:

\[\Xi = (\text{wexp} \Delta_G) \diamond F, \]

where \(D_\zeta F = 0 \) for all \(\zeta \in E \).
Now we consider the differential equation:

\[
\begin{cases}
D^-\xi = 2a(\zeta)\diamond \xi, & \zeta \in E, \\
D^+\xi = 0.
\end{cases}
\]

By the previous Example the solution is of the form:

\[\xi = (\text{wexp } \Delta G) \diamond F, \quad D^-\xi F = 0 \text{ for all } \zeta \in E.\]

We need only to find additional conditions for \(F \) satisfying \(D^+\xi = 0 \).

Noting that \(D^+\Delta G = 0 \), we have

\[D^+\xi = (\text{wexp } \Delta G) \diamond D^+\xi F = 0.\]

Hence \(D^+ F = 0 \) for all \(\zeta \in E \), so \(F \) is a scalar operator (Example (1)).

Consequently, the solution to (4) is of the form:

\[\xi = C \text{ wexp } \Delta G, \quad C \in \mathbb{C}.\]
4. Applications
4.1. Quantum Martingales

Theorem (Ji JFA 201 (2003), also Parthasarathy–Sinha JFA 67 (1986))

A regular quantum martingale \(\{M_t\}_{t \in \mathbb{R}^+} \subset \mathcal{L}(\mathcal{G}_p(\mathbb{R}^+), \mathcal{G}_q(\mathbb{R}^+)) \) admits an integral representation:

\[
M_t = \lambda I + \int_0^t (E_dA + F_dA^* + Gd\Lambda),
\]

where \(\{E_t\}, \{F_t\}, \{G_t\} \) in \(\mathcal{L}(\mathcal{G}_p(\mathbb{R}^+), \mathcal{G}_q(\mathbb{R}^+)) \) are adapted processes and \(\lambda \in \mathbb{C} \).

Theorem (Ji–O. CMP 286 (2009))

The integrands of \(M_t \) is obtained by

\[
E_s = D_s^- \left[M_s - \int_0^s a_u^* (D_u^+ M_u) du \right],
\]

\[
F_s = D_s^+ \left[M_s - \int_0^s (D_u^- M_u) a_u du \right],
\]

\[
G_s = D_s^+ \left[\int_0^s \left\{ D_u^- \left(M_u - \int_0^u E_v a_v dv - \int_0^u a_v^* F_v dv \right) \right\} du \right].
\]
4.1. Quantum Martingales (cont)

Quantum stochastic integrals of Itô type \[\int_0^t E dA, \int_0^t E dA^*, \int_0^t E d\Lambda \]

\[\implies \text{Quantum Hitsuda Skorohod integrals } \delta^- (\Xi), \delta^+ (\Xi), \delta^\circ (\Xi) \]

e.g., the creation gradient is defined:

\[\nabla^+ : \mathcal{L}((E), D) \xrightarrow{\cong} D \otimes (E)^* \xrightarrow{\nabla \otimes I} L^2(\mathbb{R}, \Gamma(H)) \otimes (E)^* \]

\[\cong L^2(\mathbb{R}, \Gamma(H) \otimes (E)^*) \cong L^2(\mathbb{R}, \mathcal{L}((E), \Gamma(H))) \]

Then, the creation integral is defined by

\[\delta^+ = (\nabla^+)^*: L^2(\mathbb{R}, \mathcal{L}((E)^*, \Gamma(H)))) \rightarrow \mathcal{L}((E)^*, D^*) \]

\[\delta^+ (\Xi) = (\text{non-adapted extension of}) \int \Xi(s) dA_s^* ds \]

Quantum white noise derivatives of quantum stochastic integrals, e.g.,

\[D^+_\zeta (\delta^+ (\Xi)) = \delta^+ (D^+_\zeta \Xi) + \int_{\mathbb{R}} \zeta(t) \Xi(t) dt \]
Let $S, T \in \mathcal{L}(E, E)$ and consider transformed annihilation and creation operators:

$$b(\zeta) = a(S\zeta) + a^*(T\zeta), \quad b^*(\zeta) = a^*(S\zeta) + a(T\zeta),$$

where $\zeta \in E$. We know that $b(\zeta), b^*(\zeta) \in \mathcal{L}((E), (E)) \cap \mathcal{L}((E)^*, (E)^*)$.

The implementation problem

is to find a white noise operator $U \in \mathcal{L}((E), (E)^*)$ satisfying

$$
\begin{align*}
(U) : & (E) \xrightarrow{U} (E)^* \\
& a(\zeta) \downarrow \quad b(\zeta) \\
(U) : & (E) \xrightarrow{U} (E)^* \\
& \downarrow \quad \downarrow
\end{align*}
$$

$$
\begin{align*}
(U) : & (E) \xrightarrow{U} (E)^* \\
& a^*(\zeta) \downarrow \quad b^*(\zeta) \\
(U) : & (E) \xrightarrow{U} (E)^* \\
& \downarrow \quad \downarrow
\end{align*}
$$

Key observation

$$
\begin{align*}
Ua(\zeta) = b(\zeta)U & \iff \quad D_{S\zeta}^+ U = [a(\zeta - S\zeta) - a^*(T\zeta)] \diamond U, \\
Ua^*(\zeta) = b^*(\zeta)U & \iff \quad (D_{\zeta}^- - D_{T\zeta}^+)U = [a^*(S\zeta - \zeta) + a(T\zeta)] \diamond U.
\end{align*}
$$
Proof of key observation

\[Ua(\zeta) = b(\zeta)U \]
\[= (a(S\zeta) + a^*(T\zeta))U \]
\[= [a(S\zeta), U] + Ua(S\zeta) + a^*(T\zeta)U \]
\[= D_{S\zeta}^+ U + Ua(S\zeta) + a^*(T\zeta)U, \]

Hence

\[D_{S\zeta}^+ U = Ua(\zeta) - Ua(S\zeta) - a^*(T\zeta)U \]
\[= Ua(\zeta - S\zeta) - a^*(T\zeta)U \]
\[= [a(\zeta - S\zeta) - a^*(T\zeta)] \diamond U. \]

Remark If \(b(\zeta) \) is replaced with \(b(\zeta) = \int_T S\zeta(t)a_t^m \, dt + \int_T T\zeta(t)(a_t^*)^n \, dt \), we need to define quantum white noise derivatives with respect to the higher powers of quantum white noise:

\[D_{S\zeta}^+ U = \left[\int_T S\zeta(t)a_t^m \, dt, U \right]. \]

But this is not a Wick derivation.
4.2. The Implementation Problem for CCR (cont)

Theorem (Ji–O. JMP 51 (2010))

Assume the following conditions:

(i) S is invertible;

(ii) $T^* S = S^* T \iff [b(\zeta), b(\eta)] = [b^*(\zeta), b^*(\eta)] = 0$;

(iii) $S^* S - T^* T = I \iff [b(\zeta), b^*(\eta)] = \langle \zeta, \eta \rangle$;

(iv) $ST^* = TS^*$.

A white noise operator $U \in \mathcal{L}((E), (E)^*)$ satisfies the following intertwining properties:

$$Ua(\zeta) = b(\zeta)U, \quad Ua^*(\zeta) = b^*(\zeta)U, \quad \zeta \in E,$$

if and only if U is of the form:

$$U = C \; \text{wexp} \left\{-\frac{1}{2} \Delta_G^* (TS^{-1}) + \Lambda((S^{-1})^* - I) + \frac{1}{2} \Delta_G (S^{-1}T)\right\}$$

$$= C e^{-\frac{1}{2} \Delta_G^* (TS^{-1})} \Gamma((S^{-1})^*) e^{\frac{1}{2} \Delta_G (S^{-1}T)},$$

where $C \in \mathbb{C}$. This is a (generalization of) Bogolubov transformation.
4.3. The Implementation Problem for CCR — Slightly Generalized

\[b(\zeta) = a(S\zeta) + a^*(T\zeta) + \langle k, \zeta \rangle, \quad b^*(\zeta) = a^*(S\zeta) + a(T\zeta) + \langle k, \zeta \rangle \]

\[Ua(\zeta) = b(\zeta)U \iff D_{S\zeta}^+ U = [a(\zeta - S\zeta) - a^*(T\zeta) - \langle k, \zeta \rangle] \diamond U \tag{1} \]

\[Ua^*(\zeta) = b^*(\zeta)U \]

\[\iff (D_\zeta^- - D_{T\zeta}^+) U = [a^*(S\zeta - \zeta) + a(T\zeta) + \langle k, \zeta \rangle] \diamond U \tag{2} \]

\[U = \text{wexp} \left\{-a^*((S^{-1})^*k) - \frac{1}{2}\Delta^*_G(TS^{-1}) + \Lambda((S^{-1})^* - I)\right\} \diamond F, \]

where \(F \in \mathcal{L}((E), (E)^*) \) fulfills \(D_{\zeta}^+ F = 0 \) for all \(\zeta \in E \).

\[U = \text{wexp} \left\{-\frac{1}{2}\Delta^*_G(TS^{-1}) + \Lambda((S^{-1})^* - I) + \frac{1}{2}\Delta_G(S^{-1}T) + a(k)\right\} \diamond G, \]

where \(G \in \mathcal{L}((E), (E)^*) \) is an arbitrary white noise operator satisfying

\[(D_{\zeta}^- - D_{T\zeta}^+) G = 0 \quad \text{for all} \quad \zeta \in E. \]
4.4. Finding a Normal-Ordered Form of White Noise Operators

Normal-ordered form

(an operator on Fock space) = \(\sum \) (creation operators)(annihilation operators)

= : (an operator on Fock space) :

Example 1 (CCR)

\[A(f)A(g)^* = A(g)^*A(f) + \langle f, g \rangle \]

Example 2 (repeated application of CCR)

\[A(f)(A^*(g))^n = (A^*(g))^nA(f) + n\langle f, g \rangle (A^*(g))^{n-1} \]

\[e^{A(f)}e^{A^*(g)} = e^{\langle f, g \rangle}e^{A^*(g)}e^{A(f)} \]

Question: What about

\[e^{\Delta_G(S)}e^{\Delta^*_G(T)} \]
The normal-ordered form of $e^\Delta_G(S) e^{\Delta^*_G(T)}$ ($S = S^*, T = T^*$) is given by

$$e^\Delta_G(S) e^{\Delta^*_G(T)} = C e^{\Delta^*_G(T(I-4ST)^{-1})} \Gamma((I-4ST)^{-1}) e^\Delta_G(S(I-4ST)^{-1}).$$

Set $\Xi = e^\Delta_G(S) e^{\Delta^*_G(T)}$ and derive a Wick type differential equation.

$$D^+_\zeta \Xi = e^\Delta_G(S) \cdot 2a^*(T\zeta) \cdot e^{\Delta^*_G(T)}$$

$$= \left\{ -2[a^*(T\zeta), e^\Delta_G(S)] + 2a^*(T\zeta) e^\Delta_G(S) \right\} e^{\Delta^*_G(T)}$$

$$= \left\{ 2D^-_{T\zeta} e^\Delta_G(S) + 2a^*(T\zeta) e^\Delta_G(S) \right\} e^{\Delta^*_G(T)}$$

$$= 2 \cdot 2a(ST\zeta) e^\Delta_G(S) \cdot e^{\Delta^*_G(T)} + 2a^*(T\zeta) \Xi$$

$$= 4a(ST\zeta) \Xi + 2a^*(T\zeta) \Xi$$

$$= 4D^+_{ST\zeta} \Xi + 4\Xi a(ST\zeta) + 2a^*(T\zeta) \Xi$$

Hence

$$D^+_{(I-4ST)\zeta} \Xi = (4a(ST\zeta) + 2a^*(T\zeta)) \diamond \Xi$$
Assume that $I - 4ST$ is invertible. Then we obtain

$$D_\zeta^+ \Xi = \left\{ a(((I - 4ST)^{-1} - I)\zeta) + 2a^*(T(I - 4ST)^{-1}\zeta) \right\} \diamond \Xi \quad (1)$$

Similarly,

$$D_\zeta^- \Xi = \left\{ a^*((((I - 4TS)^{-1} - I)\zeta) + 2a(S(I - 4TS)^{-1}\zeta) \right\} \diamond \Xi \quad (2)$$

General solutions to (1) and (2) are obtained by our method mentioned before:

$$\Xi = \exp \Delta^*_G(T(I - 4ST)^{-1}) \diamond \exp \Lambda((I - 4ST)^{-1} - I) \diamond \text{(annihilations)}$$

$$= \text{(creations)} \diamond \exp \Lambda((I - 4TS)^{-1} - I) \diamond \exp \Delta_G(S(I - 4TS)^{-1})$$

Assuming that $ST = TS$, we obtain

$$\Xi = C \exp \Delta^*_G(T(I - 4ST)^{-1})$$

$$\diamond \exp \Lambda((I - 4ST)^{-1} - I) \diamond \exp \Delta_G(S(I - 4ST)^{-1}).$$

Consequently,

$$e^{\Delta_G(S)} e^{\Delta^*_G(T)} = Ce^{\Delta^*_G(T(I - 4ST)^{-1})} \Gamma((I - 4ST)^{-1}) e^{\Delta_G(S(I - 4ST)^{-1})},$$

where the constant C is obtained from vacuum expectation ($C = \det(1 - 4ST)^{-1/2}$).
4.5. Some Questions

1. So far a linear equation: \(D \Xi = G \diamond \Xi + F \) for characterization of white noise operators.

2. Extension to higher order linear equations?

3. Extension to non-linear equations?

4. Structure of the \(* \)-algebra generated by \(\{D_\zeta^+, D_\zeta^-\} \) and their adjoints?

5. (some challenge) Using higher powers of quantum white noise?

\[
c(\zeta) = \int_T \zeta(t) a_t^m dt, \quad c^*(\zeta) = \int_T \zeta(t) a_t^{*m} dt
\]

Can define

\[
D_\zeta^+(\Xi) = [c(\zeta), \Xi], \quad D_\zeta^-(\Xi) = -[c^*(\zeta), \Xi]
\]

Note: whenever well-defined, these are derivations with respect to the usual product (composition) of white noise operators, but are not Wick derivations.

6. (some physical interpretation) generalizing the Bogolubov transformation between \((E)^* \) (beyond \(\Gamma(H) \))? then unitarity?